Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Peptides ; 171: 171118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012983

RESUMEN

Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition characterized by widespread inflammation and pulmonary edema. Adrenomedullin (AM), a bioactive peptide with various functions, is expected to be applied in treating ARDS. Its functions are regulated primarily by two receptor activity-modifying proteins, RAMP2 and RAMP3, which bind to the AM receptor calcitonin receptor-like receptor (CLR). However, the roles of RAMP2 and RAMP3 in ARDS remain unclear. We generated a mouse model of ARDS via intratracheal administration of lipopolysaccharide (LPS), and analyzed the pathophysiological significance of RAMP2 and RAMP3. RAMP2 expression declined with LPS administration, whereas RAMP3 expression increased at low doses and decreased at high doses of LPS. After LPS administration, drug-inducible vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-) showed reduced survival, increased lung weight, and had more apoptotic cells in the lungs. DI-E-RAMP2-/- mice exhibited reduced expression of Epac1 (which regulates vascular endothelial cell barrier function), while RAMP3 was upregulated in compensation. In contrast, after LPS administration, RAMP3-/- mice showed no significant changes in survival, lung weight, or lung pathology, although they exhibited significant downregulation of iNOS, TNF-α, and NLRP3 during the later stages of inflammation. Based on transcriptomic analysis, RAMP2 contributed more to the circulation-regulating effects of AM, whereas RAMP3 contributed more to its inflammation-regulating effects. These findings indicate that, while both RAMP2 and RAMP3 participate in ARDS pathogenesis, their functions differ distinctly. Further elucidation of the pathophysiological significance and functional differences between RAMP2 and RAMP3 is critical for the future therapeutic application of AM in ARDS.


Asunto(s)
Adrenomedulina , Síndrome de Dificultad Respiratoria , Animales , Ratones , Adrenomedulina/genética , Adrenomedulina/metabolismo , Inflamación , Lipopolisacáridos , Proteína 2 Modificadora de la Actividad de Receptores/genética , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Proteína 3 Modificadora de la Actividad de Receptores/genética , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Síndrome de Dificultad Respiratoria/genética
2.
Int Immunol ; 35(5): 231-241, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36521002

RESUMEN

CD8αα+ intestinal intraepithelial lymphocytes (iIELs) are known for their unique role in keeping the integrity of the intestinal epithelial barrier, but factors affecting the development of these cells have not been thoroughly understood. Here, we found that the transcriptional regulator interferon regulatory factor-2 (IRF-2) plays a cell-intrinsic, indispensable role in establishing iIEL populations. CD8αα+, but not CD8αß+, iIELs bearing TCRαß or TCRγδ were severely reduced in numbers in mice lacking this factor (Irf2-/- mice). Moreover, the majority of residual CD8αα+TCRαß+ iIELs in these mice was immature as judged from their Thy1.2high phenotype and inefficient T-bet expression. Thymic IEL precursors isolated from Irf2-/- mice failed to efficiently generate CD8αα+TCRαß+ and TCRγδ+ IELs upon transfer in vivo and CD8αα+TCRαß+ cells in response to IL-15 in vitro. Double mutant mice lacking both interleukin-15 (IL-15) and IRF-2 showed an even more severe iIEL defect than in mice lacking IL-15 alone. Upon increasing agonistic TCR signal strength through OT-II TCR transgenesis, CD8αα+TCRαß+ iIELs became more abundant but remained immature on the Irf2-/- background. Our current observations, thus, revealed the unique bimodal role that IRF-2 plays in promoting not only generation of IEL progenitors in the thymus but also maturation of iIELs in the periphery in IL-15-dependent and -independent manners.


Asunto(s)
Mucosa Intestinal , Linfocitos Intraepiteliales , Ratones , Animales , Antígenos CD8/metabolismo , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/metabolismo , Interleucina-15 , Transducción de Señal , Factor 2 Regulador del Interferón , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T CD8-positivos/metabolismo
3.
J Immunol ; 209(6): 1173-1179, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35948397

RESUMEN

Fas, a member of the death receptor family, plays a central role in initiating cell death, a biological process crucial for immune homeostasis. However, the immunological and pathophysiological impacts to which enhanced Fas signaling gives rise remain to be fully understood. Here we demonstrate that TGF-ß-activated kinase 1 (TAK1) works as a negative regulator of Fas signaling in macrophages. Upon Fas engagement with high concentrations of FasL, mouse primary macrophages underwent cell death, and, surprisingly, Fas stimulation led to proteolytic cleavage of gasdermin (GSDM) family members GSDMD and GSDME, a hallmark of pyroptosis, in a manner dependent on caspase enzymatic activity. Remarkably, TAK1-deficient macrophages were highly sensitive to even low concentrations of FasL. Mechanistically, TAK1 negatively modulated RIPK1 kinase activity to protect macrophages from excessive cell death. Intriguingly, mice deficient for TAK1 in macrophages (TAK1mKO mice) spontaneously developed tissue inflammation, and, more important, the emergence of inflammatory disease symptoms was markedly diminished in TAK1mKO mice harboring a catalytically inactive RIPK1. Taken together, these findings not only revealed an unappreciated role of TAK1 in Fas-induced macrophage death but provided insight into the possibility of perturbation of immune homeostasis driven by aberrant cell death.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Macrófagos , Animales , Caspasas/metabolismo , Muerte Celular , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Receptores de Muerte Celular/metabolismo
4.
Sci Rep ; 12(1): 11584, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804048

RESUMEN

A close causal relationship has been suggested to exist between cancer and periodontitis. We hypothesized that the immune surveillance system is impaired in patients with periodontitis, which contributes to cancer development and growth. Therefore, the present study investigated the relationship between immune surveillance mechanisms and periodontitis in cancer patients. The presence or absence of periodontitis was assessed and the peripheral blood (PB) concentrations of IL-6, immunosuppressive cytokines (VEGF, TGF-ß1, and CCL22) and proportion of T regulatory cells (Treg, CD3 + CD4 + CD25 + Foxp3 +) were measured. Subjects were classified into the following four groups: non-cancer patients without periodontitis (C - P -), non-cancer patients with periodontitis (C - P +), cancer patients without periodontitis (C + P -), and cancer patients with periodontitis (C + P +). The results of a multivariate analysis showed that the PB concentration of IL-6 was significantly higher in C + than in C- and higher in C + P + than in C + P -. The PB proportion of Treg was significantly higher in C + P + than in C + P -, C - P + , and C - P -. The results of this study suggested that the presence of periodontitis and cancer synergistically increased Treg in PB, which may be one of the underlying causes of immunosuppression and immune evasion in cancer. It was also suggested that the presence of periodontal disease and/or cancer also increases IL-6 in PB, which would be associated with cancer progression. These results suggest the possibility that the presence of periodontitis might synergistically contribute to cancer progression.


Asunto(s)
Neoplasias , Periodontitis , Citocinas , Factores de Transcripción Forkhead , Humanos , Tolerancia Inmunológica , Interleucina-6 , Procesos Neoplásicos , Periodontitis/complicaciones , Linfocitos T Reguladores
5.
Biochem Biophys Res Commun ; 618: 93-99, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35716601

RESUMEN

Interaction among various adaptive, circulating cells and tissue-resident cells including innate lymphocytes during the establishment and maintenance of the barrier-tissue immune system has only recently started to be explored. Here, we show that the cellular crosstalk with circulating T cells and other resident cells regulated the population size of type 2 innate lymphoid cells (ILC2s) in the small intestine lamina propria. Rag1-/- mice had excessive numbers of both ILC2s and ILC3s, and such an over-expansion was corrected by establishing parabiosis with wild type mice or by adoptively transferring wild type CD4+ T cells. In contrast, anti-CD3 antibody-mediated T cell depletion in wild type mice increased ILC2 but not ILC3 numbers. Unconventional CD4-CD8- αß T and γδ T cells could also restrict ILC2 expansion as the numbers of ILC2s were not altered even in mice treated with anti-CD4/anti-CD8 antibodies. ILC3 restriction seemed to be through the control of proliferation, but that for ILC2s did not. In addition, elevation in ILC2 numbers seen in mice lacking the transcription factors RORγt and STAT6 was found to be T cell-independent. Our current findings altogether uncovered the homeostatic 'quota' restriction imposed on intestinal ILC2s in the steady state by resident non-T cells via RORγt- and STAT6-dependent mechanisms as well as by conventional and nonconventional T cells.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Proliferación Celular , Citocinas , Intestino Delgado , Pulmón , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Linfocitos T
6.
Nat Commun ; 12(1): 3655, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135341

RESUMEN

RNA in extracellular vesicles (EVs) are uptaken by cells, where they regulate fundamental cellular functions. EV-derived mRNA in recipient cells can be translated. However, it is still elusive whether "naked nonvesicular extracellular mRNA" (nex-mRNA) that are not packed in EVs can be uptaken by cells and, if so, whether they have any functions in recipient cells. Here, we show the entrance of nex-mRNA in the nucleus, where they exert a translation-independent function. Human nex-interleukin-1ß (IL1ß)-mRNA outside cells proved to be captured by RNA-binding zinc finger CCCH domain containing protein 12D (ZC3H12D)-expressing human natural killer (NK) cells. ZC3H12D recruited to the cell membrane binds to the 3'-untranslated region of nex-IL1ß-mRNA and transports it to the nucleus. The nex-IL1ß-mRNA in the NK cell nucleus upregulates antiapoptotic gene expression, migration activity, and interferon-γ production, leading to the killing of cancer cells and antimetastasis in mice. These results implicate the diverse actions of mRNA.


Asunto(s)
Núcleo Celular/metabolismo , Espacio Extracelular/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Animales , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Medios de Cultivo Condicionados/metabolismo , Endorribonucleasas/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Células Asesinas Naturales/metabolismo , Ratones , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/farmacología , Proteínas de Unión al ARN/metabolismo
7.
Endocrinology ; 162(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33955458

RESUMEN

Pulmonary fibrosis is an irreversible, potentially fatal disease. Adrenomedullin (AM) is a multifunctional peptide whose activity is regulated by receptor activity-modifying protein 2 (RAMP2). In the present study, we used the bleomycin (BLM)-induced mouse pulmonary fibrosis model to investigate the pathophysiological significance of the AM-RAMP2 system in the lung. In heterozygous AM knockout mice (AM+/-), hydroxyproline content and Ashcroft scores reflecting the fibrosis severity were significantly higher than in wild-type mice (WT). During the acute phase after BLM administration, FACS analysis showed significant increases in eosinophil, monocyte, and neutrophil infiltration into the lungs of AM+/-. During the chronic phase, fibrosis-related molecules were upregulated in AM+/-. Notably, nearly identical changes were observed in RAMP2+/-. AM administration reduced fibrosis severity. In the lungs of BLM-administered AM+/-, the activation level of Smad3, a receptor-activated Smad, was higher than in WT. In addition, Smad7, an antagonistic Smad, was downregulated and microRNA-21, which targets Smad7, was upregulated compared to WT. Isolated AM+/- lung fibroblasts showed less proliferation and migration capacity than WT fibroblasts. Stimulation with TGF-ß increased the numbers of α-SMA-positive myofibroblasts, which were more prominent among AM+/- cells. TGF-ß-stimulated AM+/- myofibroblasts were larger and exhibited greater contractility and extracellular matrix production than WT cells. These cells were α-SMA (+), F-actin (+), and Ki-67(-) and appeared to be nonproliferating myofibroblasts (non-p-MyoFbs), which contribute to the severity of fibrosis. Our findings suggest that in addition to suppressing inflammation, the AM-RAMP2 system ameliorates pulmonary fibrosis by suppressing TGF-ß-Smad3 signaling, microRNA-21 activity and differentiation into non-p-MyoFbs.


Asunto(s)
Adrenomedulina/uso terapéutico , Miofibroblastos/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adrenomedulina/metabolismo , Adrenomedulina/farmacología , Animales , Bleomicina , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Infusiones Intravenosas , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/prevención & control , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/farmacología
8.
J Immunol ; 203(4): 783-788, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243089

RESUMEN

TGF-ß-activated kinase 1 (TAK1) is known to play vital roles for innate and adaptive immunity; however, little is known about its potential role in limiting biological responses such as inflammation. In this study, we report that macrophage TAK1 participates in negatively regulating inflammation by restraining proinflammatory cell death. Macrophages from TAK1-deficient mice underwent cell death in response to LPS and poly(I:C), which took place in a manner dependent on TLR/TRIF-induced active Caspase8-mediated cleavage of gasdermin D, known as an executioner of pyroptosis. Likewise, TNF-α induced Caspase8-dependent gasdermin D processing following cell death in TAK1-deficient macrophages. Importantly, we demonstrated that this type of proinflammatory macrophage death is linked to susceptibility to septic shock in mice lacking TAK1 in macrophages in a TNF-α-independent fashion. Taken together, our data revealed that TAK1 acts as a signaling checkpoint to protect macrophages from unique proinflammatory cell death, ensuring the maintenance of innate immune homeostasis.


Asunto(s)
Inflamación/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Macrófagos/inmunología , Animales , Muerte Celular/inmunología , Inmunidad Innata/fisiología , Inflamación/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Biochem Biophys Res Commun ; 511(2): 350-355, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30795864

RESUMEN

Staphylococcal superantigen-like (SSL) protein is a family of exotoxins that consists of 14 SSLs, and the roles of several SSLs in immune evasion of the cocci have been revealed. However little is known whether they act as immune activators and are involved in inflammatory disorders such as atopic dermatitis. In this study we examined whether SSLs activate mast cells, the key player of local inflammation. SSL12 evoked the release of a granule enzyme ß-hexosaminidase from bone marrow derived mast cells (BMMCs) in the absence of IgE. The release of the granule enzyme caused by SSL12 was not accompanied with the leakage of a cytosolic enzyme lactate dehydrogenase (LDH), unlike staphylococcal δ-toxin that was reported to induce both the release of ß-hexosaminidase and the leakage of LDH from the cells, suggesting that SSL12 evokes the degranulation of mast cells without cell membrane damage. Furthermore SSL12 induced IL-6 and IL-13 in both mRNA and protein levels indicating that SSL12 induces de novo synthesis of the cytokines. Evans blue extravasation was elevated by the intradermal injection of SSL12, suggesting that SSL12 is also able to evoke local inflammation in vivo. These findings indicate the novel mast cell activating activity of SSLs, and SSL12 is likely an important factor in both initiation phase and effector phase of allergic and immune responses.


Asunto(s)
Mastocitos/microbiología , Staphylococcus/inmunología , Superantígenos/inmunología , Animales , Degranulación de la Célula , Células Cultivadas , Citocinas/inmunología , Interacciones Huésped-Patógeno , Mastocitos/inmunología , Mastocitos/fisiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología
10.
Int Immunol ; 31(8): 489-498, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30783658

RESUMEN

Innate lymphoid cells (ILCs), composed of heterogeneous populations of lymphoid cells, contribute critically to immune surveillance at mucosal surfaces. ILC subsets develop from common lymphoid progenitors through stepwise lineage specification. However, the composition and temporal regulation of the transcription factor network governing such a process remain incompletely understood. Here, we report that deletion of the transcription factor interferon regulatory factor 2 (IRF-2), known also for its importance in the maturation of conventional NK cells, resulted in an impaired generation of ILC1, ILC2 and ILC3 subsets with lymphoid tissue inducer (LTi)-like cells hardly affected. In IRF-2-deficient mice, PD-1hi ILC precursors (ILCPs) that generate these three ILCs but not LTi-like cells were present at normal frequency, while their sub-population expressing high amounts of PLZF, another marker for ILCPs, was severely reduced. Notably, these IRF-2-deficient ILCPs contained normal quantities of PLZF-encoding Zbtb16 messages, and PLZF expression in developing invariant NKT cells within the thymus was unaffected in these mutant mice. These results point to a unique, cell-type selective role for IRF-2 in ILC development, acting at a discrete step critical for the generation of functionally competent ILCPs.


Asunto(s)
Inmunidad Innata/inmunología , Factor 2 Regulador del Interferón/inmunología , Linfocitos/inmunología , Células Progenitoras Linfoides/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G155-G165, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30431330

RESUMEN

The traditional Japanese health care custom recommends that a suitable volume of water is consumed. However, physiological and immunological mechanisms in support of this practice are unknown. Therefore, we conducted rat and rabbit in vivo experiments to investigate the effects of intragastric administration of distilled water on the jejunal-originated lymph flow and the concentrations and total flux of cells, albumin, long-chain fatty acids, and innate lymphoid cell 3 (ILC-3)-secreted interleukin-22 (IL-22) through mesenteric lymph vessels. The distribution and activity of ILC-3 in rat small intestine by water intake were evaluated using flow cytometry and RT-PCR. The intragastric administration of distilled water caused significant increases in rat mesenteric lymph flow and in the total flux of cells, albumin, long-chain fatty acids, and IL-22 through the lymph vessels. Intravenously injected Evans blue dye was rapidly transported into rabbit mesenteric lymph vessel and cisterna chyli. The distribution of ILC-3 and the expression of IL-22 mRNA were maximal in the lamina propria cells of the rat jejunum. No significant presence of ILC-3 in the lymph was observed in the control and under water intake conditions. In conclusion, the absorbed water in the jejunum is transported through mesenteric lymph vessels. The higher permeability of albumin in the jejunal microcirculation may play key roles in the transport of consumed water and the reservoir and transporter of long-chain fatty acids. Water intake also accelerates the transfer of IL-22 to the mesenteric lymph, which may contribute, in part, to maintaining and promoting the innate immunity in the body. NEW & NOTEWORTHY The higher permeability of albumin-mediated transport of water-soluble substances in mesenteric lymph vessels of the jejunum may have a large impact on the classic concept suggesting that water-soluble small molecules travel to the liver via the portal vein. ILC-3 is mainly housed in the lamina propria of the jejunum, especially its upper part. IL-22 released from the ILC-3 is also transported through mesenteric lymph in collaboration with the albumin-mediated movement of consumed water.


Asunto(s)
Albúminas/metabolismo , Ingestión de Líquidos/fisiología , Ácidos Grasos/metabolismo , Interleucinas/metabolismo , Yeyuno/metabolismo , Animales , Inmunidad Innata/inmunología , Absorción Intestinal , Hígado/metabolismo , Linfa/metabolismo , Vasos Linfáticos/metabolismo , Linfocitos/metabolismo , Masculino , Conejos , Interleucina-22
13.
PLoS One ; 10(7): e0128761, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26132627

RESUMEN

The kinase TAK is required for the development of conventional and regulatory T cells. We previously reported that mice with conditional deletion of TAK1 in T cells (Lck-cre:TAK1fl/fl mice) exhibited severe T lymphopenia, and were nevertheless predisposed to spontaneous colitis with unknown etiology. Here we focused on the immunopathological mechanism in colitic Lck-cre:TAK1fl/fl mice. We found that 'leaky' CD4+ T cells retaining TAK1 acquired inflammatory phenotypes that contribute to disease onset in Lck-cre:TAK1fl/fl mice. Furthermore, the gut microbiota-triggered signaling was also a key event leading to the pathogenesis. We discovered that Lck-cre:TAK1fl/fl mice were almost completely devoid of TCRαß+CD8α+ intestinal intraepithelial lymphocytes (IELs) and this was largely due to the developmental defect of the thymic precursors by TAK1 deficiency. Remarkably, transfer of TCRαß+CD8α+ IELs from wild-type mice ameliorated colitis in Lck-cre:TAK1fl/fl mice. Taken together, our current study highlighted the emerging role of TAK1 in configuring the gut-specialized T cell subset, which regulates mucosal homeostasis under lymphopenic conditions.


Asunto(s)
Colitis/etiología , Colitis/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfopenia/complicaciones , Quinasas Quinasa Quinasa PAM/deficiencia , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Moco/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
14.
Biochem Biophys Res Commun ; 463(4): 1284-90, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26102028

RESUMEN

TAK1 (encoded by Map3k7) is a mitogen-activated protein kinase kinase kinase (MAP3K), which activates the transcription factors AP-1 and NF-κB in response to receptor activator of NF-κB ligand (RANKL) stimulation, thus constituting a key regulator of osteoclast differentiation. Here we report the functional relevance of the kinase activity of TAK1 in the late stage of osteoclast differentiation in vivo using Ctsk-Cre mice and TAK1 mutant mice in which the TAK1 kinase domain was flanked by loxP. The Map3k7(flox/kd)Ctsk(Cre/+) mice displayed a severe osteopetrotic phenotype due to a marked decrease in osteoclast number. RANKL-induced activation of MAPK and NF-κB was impaired in the late stage of osteoclast differentiation. The absence of suppressive effect of an administered NF-κB inhibitor on the late stage of osteoclastogenesis led us to investigate unknown TAK1 targets in osteoclast differentiation. We performed a phosphoproteomic analysis of RANKL-stimulated osteoclast precursor cells from Map3k7(flox/kd)Ctsk(Cre/+) mice, revealing multiple targets regulated by TAK1 during osteoclastogenesis. Thus, TAK1 functions as a critical regulator of the phosophorylation status of various cellular proteins that govern osteoclastogenesis.


Asunto(s)
Diferenciación Celular , Quinasas Quinasa Quinasa PAM/metabolismo , Osteoclastos/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Secuencia de Aminoácidos , Animales , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Osteoclastos/citología , Fosfoproteínas/química
15.
Science ; 344(6185): 760-4, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24833394

RESUMEN

A switchlike response in nuclear factor-κB (NF-κB) activity implies the existence of a threshold in the NF-κB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-κB (IκB) kinase-ß (IKKß) module is a switch mechanism for NF-κB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKß to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKß target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-κB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Guanilato Ciclasa/metabolismo , Quinasa I-kappa B/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , FN-kappa B/agonistas , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Línea Celular , Pollos , Retroalimentación Fisiológica , Guanilato Ciclasa/genética , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Mutación , Fosforilación , Receptores de Antígenos de Linfocitos B/genética , Serina/genética , Serina/metabolismo , Transducción de Señal
16.
J Immunol ; 190(8): 4037-45, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23509369

RESUMEN

Polyubiquitination of proteins plays a critical role in the activation of immune cells. K63-linked polyubiquitin-binding proteins TGF-ß-activated kinase 1 (TAK1)-binding protein (TAB)2 and TAB3 are implicated in NF-κB signaling via TAK1 activation. However, TAB2 alone is dispensable for NF-κB activation in embryonic fibroblasts, and the functional roles of TAB2 and TAB3 in immune cells has yet to be clarified. In this study, we demonstrate that TAB2 and TAB3 are essential for B cell activation leading to Ag-specific Ab responses, as well as B-1 and marginal zone B cell development. TAB2 and TAB3 are critical for the activation of MAPKs, especially ERK, but not NF-κB, in response to TLR and CD40 stimulation in B cells. Surprisingly, TAB2 and TAB3 are dispensable for TAK1 activation in B cells, indicating that TAB2 and TAB3 activate MAPKs via a pathway independent of TAK1. In contrast to B cells, macrophages lacking TAB2 and TAB3 did not show any defects in the cytokine production and the signaling pathway in response to TLR stimulation. Furthermore, TAB2 and TAB3 were dispensable for TNF-induced cytokine production in embryonic fibroblasts. Thus, TAB2- and TAB3-mediated K63-linked polyubiquitin recognition controls B cell activation via MAPKs, but not the TAK1/NF-κB axis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos B/inmunología , Activación de Linfocitos/inmunología , Quinasas Quinasa Quinasa PAM/fisiología , Poliubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Diferenciación Celular/inmunología , Células Cultivadas , Epítopos de Linfocito B/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Poliubiquitina/química
17.
J Immunol ; 188(10): 4838-45, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22504642

RESUMEN

NK cell receptors (NKRs) such as NK1.1, NKG2D, and Ly49s are expressed on subsets of CD1d-independent memory phenotype CD8(+) and CD4(-)CD8(-) T cells. However, the mechanism for the generation and functions of these NKR(+) T cells remained elusive. In this study, we found that CD1d-independent Ly49(+) T cells were reduced severely in the spleen, bone marrow, and liver, but not thymus, in mice doubly deficient for IFN regulatory factor-2 (IRF-2) and CD1d, in which the overall memory phenotype T cell population was contrastingly enlarged. Because a large fraction of Ly49(+) T cells coexpressed NK1.1 or NKG2D, the reduction of Ly49(+) T cells resulted indirectly in underrepresentation of NK1.1(+) or NKG2D(+) cells. Ly49(+) T cell deficiency was observed in IRF-2(-/-) mice additionally lacking IFN-α/ßR α-chain (IFNAR1) as severely as in IRF-2(-/-) mice, arguing against the involvement of the accelerated IFN-α/ß signals due to IRF-2 deficiency. Rather, mice lacking IFN-α/ßR alone also exhibited relatively milder Ly49(+) T cell reduction, and IL-2 could expand Ly49(+) T cells from IFNAR1(-/-), but not from IRF-2(-/-), spleen cells in vitro. These results together indicated that IRF-2 acted in Ly49(+) T cell development in a manner distinct from that of IFN-α/ß signals. The influence of IRF-2 deficiency on Ly49(+) memory phenotype T cells observed in this study suggested a unique transcriptional program for this T cell population among other NKR(+) T and memory phenotype T cells.


Asunto(s)
Antígenos CD1d/fisiología , Diferenciación Celular/inmunología , Factor 2 Regulador del Interferón/fisiología , Receptores de Células Asesinas Naturales/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Antígenos CD1d/genética , Diferenciación Celular/genética , Memoria Inmunológica/genética , Memoria Inmunológica/inmunología , Inmunofenotipificación/métodos , Factor 2 Regulador del Interferón/deficiencia , Factor 2 Regulador del Interferón/genética , Linfopenia/genética , Linfopenia/inmunología , Linfopenia/patología , Ratones , Ratones Noqueados , Subfamilia A de Receptores Similares a Lectina de Células NK/biosíntesis , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/patología
18.
J Immunol ; 185(3): 1949-58, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20592286

RESUMEN

The TNF superfamily member homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpesvirus entry mediator (HVEM), a receptor expressed by T lymphocytes (LIGHT) [TNF superfamily (SF)-14], is a key cytokine that activates T cells and dendritic cells and is implicated as a mediator of inflammatory, metabolic, and malignant diseases. LIGHT engages the lymphotoxin-beta receptor (LTbetaR) and HVEM (TNFRSF14), but is competitively limited in activating these receptors by soluble decoy receptor-3 (DcR3; TNFRSF6B). Two variants in the human LIGHT alter the protein at E214K (rs344560) in the receptor-binding domain and S32L (rs2291667) in the cytosolic domain; however, the functional impact of these polymorphisms is unknown. A neutralizing Ab failed to bind the LIGHT-214K variant, indicating this position as a part of the receptor-binding region. Relative to the predominant reference variant S32/E214, the other variants showed altered avidity with LTbetaR and less with HVEM. Heterotrimers of the LIGHT variants decreased binding avidity to DcR3 and minimized the inhibitory effect of DcR3 toward LTbetaR-induced activation of NF-kappaB. In patients with immune-mediated inflammatory diseases, such as rheumatoid arthritis, DcR3 protein levels were significantly elevated. Immunohistochemistry revealed synoviocytes as a significant source of DcR3 production, and DcR3 hyperexpression is controlled by posttranscriptional mechanisms. The increased potential for LTbetaR signaling, coupled with increased bioavailability due to lower DcR3 avidity, provides a mechanism of how polymorphic variants in LIGHT could contribute to the pathogenesis of inflammatory diseases.


Asunto(s)
Variación Genética/inmunología , Polimorfismo de Nucleótido Simple/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Secuencia de Aminoácidos , Disponibilidad Biológica , Técnicas de Cocultivo , Células HeLa , Humanos , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Modelos Inmunológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , FN-kappa B/antagonistas & inhibidores , Unión Proteica/genética , Unión Proteica/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/fisiología , Miembro 6b de Receptores del Factor de Necrosis Tumoral/fisiología , Transducción de Señal/genética , Transducción de Señal/inmunología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/fisiología
19.
J Biol Chem ; 285(22): 17148-55, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20348096

RESUMEN

The lymphotoxin-beta receptor (LTbetaR) activates the NF-kappaB2 transcription factors, p100 and RelB, by regulating the NF-kappaB-inducing kinase (NIK). Constitutive proteosomal degradation of NIK limits NF-kappaB activation in unstimulated cells by the ubiquitin:NIK E3 ligase comprised of subunits TNFR-associated factors (TRAF)3, TRAF2, and cellular inhibitor of apoptosis (cIAP). However, the mechanism releasing NIK from constitutive degradation remains unclear. We found that insertion of a charge-repulsion mutation in the receptor-binding crevice of TRAF3 ablated binding of both LTbetaR and NIK suggesting a common recognition site. A homologous mutation in TRAF2 inhibited cIAP interaction and blocked NIK degradation. Furthermore, the recruitment of TRAF3 and TRAF2 to the ligated LTbetaR competitively displaced NIK from TRAF3. Ligated LTbetaR complexed with TRAF3 and TRAF2 redirected the specificity of the ubiquitin ligase reaction to polyubiquitinate TRAF3 and TRAF2, leading to their proteosomal degradation. Stimulus-dependent degradation of TRAF3 required the RING domain of TRAF2, but not of TRAF3, implicating TRAF2 as a key E3 ligase in TRAF turnover. The combined action of competitive displacement of NIK and TRAF degradation halted NIK turnover, and promoted its association with IKKalpha and signal transmission. These results indicate the LTbetaR modifies the ubiquitin:NIK E3 ligase, and also acts as an allosteric regulator of the ubiquitin:TRAF E3 ligase.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Receptor beta de Linfotoxina/química , Proteínas Serina-Treonina Quinasas/química , Factor 3 Asociado a Receptor de TNF/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Sitio Alostérico , Animales , Sitios de Unión , Humanos , Quinasa I-kappa B/metabolismo , Ratones , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Quinasa de Factor Nuclear kappa B
20.
J Immunol ; 183(11): 7286-96, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19915044

RESUMEN

The inhibitory cosignaling pathway formed between the TNF receptor herpesvirus entry mediator (HVEM, TNFRSF14) and the Ig superfamily members, B and T lymphocyte attenuator (BTLA) and CD160, limits the activation of T cells. However, BTLA and CD160 can also serve as activating ligands for HVEM when presented in trans by adjacent cells, thus forming a bidirectional signaling pathway. BTLA and CD160 can directly activate the HVEM-dependent NF-kappaB RelA transcriptional complex raising the question of how NF-kappaB activation is repressed in naive T cells. In this study, we show BTLA interacts with HVEM in cis, forming a heterodimeric complex in naive T cells that inhibits HVEM-dependent NF-kappaB activation. The cis-interaction between HVEM and BTLA is the predominant form expressed on the surface of naive human and mouse T cells. The BTLA ectodomain acts as a competitive inhibitor blocking BTLA and CD160 from binding in trans to HVEM and initiating NF-kappaB activation. The TNF-related ligand, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes, or TNFSF14) binds HVEM in the cis-complex, but NF-kappaB activation was attenuated, suggesting BTLA prevents oligomerization of HVEM in the cis-complex. Genetic deletion of BTLA or pharmacologic disruption of the HVEM-BTLA cis-complex in T cells promoted HVEM activation in trans. Interestingly, herpes simplex virus envelope glycoprotein D formed a cis-complex with HVEM, yet surprisingly, promoted the activation NF-kappaB RelA. We suggest that the HVEM-BTLA cis-complex competitively inhibits HVEM activation by ligands expressed in the surrounding microenvironment, thus helping maintain T cells in the naive state.


Asunto(s)
Activación de Linfocitos/inmunología , Receptores Inmunológicos/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Citometría de Flujo , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/química , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Linfocitos T/química , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...